
ooRexx Group Therapy

The Fear of Objects

The Gartner Hype Curve

● When Object Rexx was first designed during the
Peak of Inflated Expectations era
– ...it's now the Plateau of Productivity.

● ...Resistance is Futile!

Nouns and Verbs

● Design your application by identifying the entities
you need to manipulate (the “nouns”) and the
operations you need to perform on the entities (the
“verbs”)
– These are your starting classes and methods
– Each class is a specialist at an individual task
– Fine-grained objects working together to create a

whole is the goal
– Note that “Interitance” is NOT the starting point here.

A DSECT is not an object

● This
::class tabelem
::attribute stcknum
::attribute artist
::attribute title
::attribute instock
::attribute price

● Is little different than this
TABELEM DSECT
STCKNUM DS F
ARTIST DS CL24
TITLE DS CL24
INSTOCK DS F
PRICE DS F

● An object is more than just data!

Design the operations first

● Define the nouns, decide on the verbs...
– Then decide in the data you need internally to

implement the above
– ::attribute methods define a “set” and “get” operation.

It is part of your object interface.
● Not all variables used inside the object are appropriate to

expose as part of the interface.

Don't design your objects as
collections
● Separate the implementation of the object from its

presence in a collection:
– “a~setTitle(i, “This is the title”)”

vs.
– “a[i]~setTitle(“This is the title”)

The factory is not the car!

● Classes are the factories that make objects
– There is one factory, which can make many objects.
– New objects are ordered from the factory (“new”)
– Classes are themselves objects, so they can have their

own methods defined
● Object instances are created by the factories

– Object customization finishes when the factory calls
“init” on the new object

– One factory, many object instances

Keep the function close to the data

● If code that uses a class is making many calls to
object methods or changing many attributes,
perhaps code should be refactored into a method
of the target class.
– This is particularly true if this occurs in more than one

place!

Understanding References

● Everything in ooRexx is done using references
(“pointers”) to objects
– All variables. An assignment just updates the object

reference
– All expressions evaluate to a result object
– All method/function arguments are passed as

references
– Some objects inherently contain references to other

objects (e.g., the Collection classes)

Variables \= Objects

● A variable is NOT the same as the object it
references
– A variable in an expression evaluates to an object

reference, just like any other expression term
– When used as a function/method argument, the

receiving function/method only sees the evaluated
object reference, not the originating variable

– Multiple variables may point to the same object
reference...

● This is where “Immutability” becomes an important concept

Immutability

● Some objects contain references to other objects
that can be updated

● When referenced by multiple variables, the update
is seen in multiple places.
– None of the variables are changed...they still point to

the original object
– Assigning something to the variable updates the

variable reference, severing the connection
● String objects are “immutable”, so you cannot see

this effect with strings

Consider this...

a = .myclass~new(“Fred”)
b = a -- “B” and “A” point to same object
a~value = “Mike” -- updates variable inside object
say a~value b~value -- displays “Mike Mike”
a = .myclass~new(“Rick”) -- “A” points to
 -- different object
say a~value b~value -- displays “Rick Mike”

::class myclass
::method init
expose value
use arg value

::attribute value

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

